An Eigenvalue Representation for Random Walk Hitting times and Its Application to the Rook Graph
نویسنده
چکیده
Given an aperiodic random walk on a finite graph, an expression will be derived for the hitting times in terms of the eigenvalues of the transition matrix. The process of diagonalizing the transition matrix and its associated fundamental matrix will be discussed. These results will then be applied to a random walk on a rook graph. Lastly, a cover time bound depending on the hitting times will be proved.
منابع مشابه
Symmetry in Quantum Walks
A discrete-time quantum walk on a graph is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. Hitting times for discrete quantum walks on graphs give an average time before the walk reaches an ending condition. We derive an expression for hitting time using superoperators, and numerically evaluate it for the walk on the hypercube for various ...
متن کاملFirst Hitting times of Simple Random Walks on Graphs with Congestion Points
We derive the explicit formulas of the probability generating functions of the first hitting times of simple random walks on graphs with congestion points using group representations. 1. Introduction. Random walk on a graph is a Markov chain whose state space is the vertex set of the graph and whose transition from a given vertex to an adjacent vertex along an edge is defined according to some ...
متن کاملHitting and commute times in large graphs are often misleading
Next to the shortest path distance, the second most popular distance function between vertices in a graph is the commute distance (resistance distance). For two vertices u and v, the hitting time Huv is the expected time it takes a random walk to travel from u to v. The commute time is its symmetrized version Cuv = Huv + Hvu. In our paper we study the behavior of hitting times and commute dista...
متن کاملHow Slow, or Fast, Are Standard Random Walks? - Analyses of Hitting and Cover Times on Tree
Random walk is a powerful tool, not only for modeling, but also for practical use such as the Internet crawlers. Standard random walks on graphs have been well studied; It is well-known that both hitting time and cover time of a standard random walk are bounded by O(n) for any graph with n vertices, besides the bound is tight for some graphs. Ikeda et al. (2003) provided “β-random walk,” which ...
متن کاملHitting times for random walks on vertex-transitive graphs
For random walks on finite graphs, we record some equalities, inequalities and limit theorems (as the size of graph tends to infinity) which hold for vertex-transitive graphs but not for general regular graphs. The main result is a sharp condition for asymptotic exponentiality of the hitting time to a single vertex. Another result is a lower bound for the coefficient of variation of hitting tim...
متن کامل